Recent Post

Astroparticulas

La Física de Astropartículas o Astrofísica de Partículas es un campo relativamente reciente de investigación que se dedica al estudio de las partículas elementales de origen astrofísico.

Fisica de particulas

La física de partículas es la rama de la física que estudia los componentes elementales de la materia y las interacciones entre ellos.

Cosmologia

Estudiar y determinar la naturaleza, energía y lugar de origen de los rayos cósmicos como vía para comprender mejor el origen del Universo.

Noticias

Noticias sobre Fisica de Particulas, Astrofisica y Fisica Nuclear.

Videos

Videos sobre Fisica de Particulas, Astrofisica y Fisica Nuclear.

viernes, 27 de junio de 2014

Una posible señal de materia oscura

Una posible señal de materia oscura
Gracias a los observatorios de alta energía de la ESA y de la NASA, los astrónomos han descubierto una prometedora pista que podría estar relacionada con uno de los ingredientes más enigmáticos de nuestro Universo: la materia oscura.

Aunque en principio la materia oscura es invisible, ya que no emite ni absorbe luz, se puede detectar a través de su influencia gravitatoria sobre el movimiento y la apariencia de otros objetos del Universo, como las estrellas o las galaxias.

Basándose en estas medidas indirectas, los astrónomos calculan que la materia oscura es el tipo de materia más abundante en el Universo – y aún así sigue siendo una gran desconocida.

Al estudiar los cúmulos de galaxias, las mayores estructuras cósmicas cohesionadas por gravedad, se puede haber encontrado una nueva pista.

Los cúmulos de galaxias están formados por cientos de galaxias y por una enorme cantidad de gas caliente que rellena el espacio entre ellas.

Sin embargo, al estudiar los efectos gravitatorios de estos cúmulos se ha descubierto que las galaxias y el gas apenas constituyen una quinta parte de su masa total – se piensa que el resto es materia oscura.

El gas, principalmente hidrógeno, alcanza temperaturas de más de 10 millones de grados Celsius, lo que provoca que emita rayos X. Las trazas de los otros elementos imprimen ‘líneas’ adicionales en su espectro, a determinadas longitudes de onda.

Al estudiar las observaciones de 73 cúmulos de galaxias realizadas con los telescopios espaciales XMM-Newton de la ESA y Chandra de la NASA, los astrónomos han descubierto una enigmática línea en el espectro a una longitud de onda en la que normalmente no había nada.

“Si esta extraña señal estuviese relacionada con un elemento químico conocido, debería haber dejado otras líneas en el espectro, a las longitudes de onda habituales, pero no hay nada más”, explica la Dra. Esra Bulbul del Centro de Astrofísica Harvard-Smithsonian en Cambridge, Massachusetts, Estados Unidos, autora principal del artículo que presenta estas conclusiones.

“Tuvimos que buscar una explicación más allá del reino de la materia ordinaria”.

Los astrónomos piensan que esta enigmática emisión pudo haber sido provocada por el decaimiento de un tipo exótico de partícula subatómica conocida como ‘neutrino estéril’, predicha por la teoría pero que todavía no se ha detectado.

Los neutrinos ordinarios son partículas de muy baja masa que apenas interactúan con la materia, sólo a través de la fuerza nuclear débil o de la gravedad. Se piensa que los neutrinos estériles serían un tipo especial al que sólo afecta la gravedad, por lo que podrían ser uno de los componentes de la materia oscura.

“Si la interpretación de nuestras observaciones es correcta, al menos una parte de la materia oscura en los cúmulos de galaxias podría estar formada por neutrinos estériles”, comenta Bulbul.

Los cúmulos estudiados se encuentran a una distancia de entre cien millones de años luz y unos pocos miles de millones de años luz. La misteriosa señal fue detectada al combinar distintas observaciones de estos cúmulos, y en una imagen individual del Cúmulo de Perseo, una estructura masiva en nuestro vecindario cósmico.

Este descubrimiento podría tener grandes repercusiones, pero los investigadores prefieren ser cautos. Hará falta realizar nuevas observaciones de más cúmulos con telescopios de alta energía como XMM-Newton o Chandra para poder confirmar si realmente existe una conexión con la materia oscura.

“El descubrimiento de esta singular línea en el espectro de rayos X fue posible gracias al gran archivo de XMM-Newton y a la capacidad del observatorio para recoger rayos X a distintas longitudes de onda”, explica Norbert Schartel, Científico del Proyecto XMM-Newton para la ESA.

“Sería muy emocionante poder confirmar que XMM-Newton nos ha ayudado a encontrar la primera señal directa de la materia oscura”.

“Todavía falta mucho para llegar a ese punto, pero por el camino vamos a aprender mucho sobre el contenido de nuestro extravagante Universo”.

ESA

jueves, 19 de junio de 2014

Nueva medida de la constante de gravitación universal

Nueva medida de la constante de gravitación universal
Hasta ahora, el valor de la constante de gravitación universal, que determina la intensidad de la atracción gravitatoria entre los cuerpos, era 6,67384(80) x 10-11 m3 kg-1 s-2, pero científicos italianos la han establecido en 6,67191(99) x 10-11 m3 kg-1 s-2. Para obtener el nuevo valor han utilizado átomos enfriados con láser y técnicas cuánticas de medición.

Los estudiantes de física saben que el valor de la letra G que se usa en la ley de la gravitación universal de Newton, cuya fórmula es F=G m1m2/r2, se ajusta a 6,67384(80) x 10-11 m3 kg-1 s-2 (las unidades también pueden ser N m2 kg-2). Sin embargo, un equipo de investigadores dirigidos desde la Universidad de Florencia (Italia) ha obtenido una medida ligeramente diferente.

Según publican esta semana en la revista Nature, la cifra es 6,67191(99) x 10-11 m3 kg-1 s-2, un resultado “muy importante” para avanzar hacia el establecimiento definitivo de un valor preciso absoluto de esta constante, un logro todavía pendiente.

Hasta ahora, se han hecho alrededor de 300 intentos para determinar G, la mayor parte de ellos mediante métodos de torsión similares a la balanza que utilizó Henry Cavendish en 1798, cuando calculó el valor mediante un experimento con una vara y dos esferas de plomo en sus extremos.

En las últimas décadas, aunque se ha ido incrementando la precisión de las mediciones, no se ha podido converger en un valor consistente y los resultados son discrepantes.

Esto sugiere la presencia de errores sistemáticos que todavía no se han identificado en los experimentos, aunque se piensa que están relacionados con las medidas de la atracción gravitacional entre masas macroscópicas.

En el nuevo trabajo, el equipo también ha utilizado un juego de masas macroscópicas como fuente del campo gravitatorio: cilindros de tungsteno de alrededor de 500 kilogramos. Sin embargo, el sensor de gravedad se compone de dos nubes de átomos de rubidio enfriados con láser, que suben y bajan en diferentes trayectorias según la gravedad conjunta de la Tierra y los cilindros de tungsteno.

Este cuidadoso diseño experimental, junto a las medidas cuánticas y la consideración de las fuentes de error, ha permitido obtener G con una precisión de aproximadamente el 0,015%, un poco menos que con otras mediciones y ligeramente desviado de lo que recomienda el denominado Committee on Data for Science and Technology (CODATA). Aun así lo que destacan los investigadores es el potencial de mejora que tiene la nueva técnica para llegar al valor definitivo.

SINC

miércoles, 4 de junio de 2014

El CERN, un paso más cerca de descubrir a dónde se fue la antimateria

El CERN, un paso más cerca de descubrir a dónde se fue la antimateria
Un estudio publicado por investigadores de la Organización Europea para la Investigación Nuclear (CERN) ha supuesto un paso adelante en la investigación de la antimateria y hacia dónde se ha ido. La asimetría materia-antimateria es uno de los mayores desafíos en la física.

Según han explicado los expertos, en este momento en el tiempo, el Universo parece estar compuesto en su totalidad de materia, siendo la única antimateria existente la que crean los propios científicos del CERN.

Sus teorías predicen que el Big Bang habría creado cantidades exactamente iguales de materia y antimateria, de ahí que los expertos se pregunten dónde está la segunda. En esta nueva investigación, llevada a cabo por el experimento ALPHA en el desacelerador de antiprotones del CERN en Ginebra, se ha producido la medición más precisa de la carga eléctrica de un anti-átomo.

"Este es el primer estudio que ha hecho una determinación precisa de una propiedad de anti-hidrógeno", ha explicado el autor principal del estudio, publicado en Nature Communications, Mike Charlton. "Este avance fue posible utilizando sólo la técnica de capturas de ALPHA y somos optimistas de que la evolución de nuestro programa producirá muchas de estas ideas en el futuro", ha añadido.

"Esperamos con interés la reanudación del programa del desacelerador de antiprotones en agosto, que nos permitirá seguir la investigación para estudiar el antihidrógeno con una precisión cada vez mayor", ha apuntado Charlton.

Por su parte, el físico John Womersley ha indicado que, "aunque el resultado no es de extrañar", supone una prueba fundamental de que la materia y la antimateria tienen cargas eléctricas iguales y opuestas y, a su juicio, "resulta tranquilizador que la naturaleza se comporte como se esperaba".

Los científicos han explicado que las antipartículas deben ser idénticas a las partículas excepto por el signo de su carga eléctrica. Así, mientras que el átomo de hidrógeno está formado por un protón con carga 1 y un electrón con carga -1, el átomo de anti-hidrógeno consiste en una carga -1 de antiprotón y una carga de 1 de positrones.

Sin embargo, se sabe que la materia y la antimateria no son opuestos de manera exacta -la naturaleza parece tener una sola parte entre 10.000 millones de preferencia por la materia frente a la antimateria-. Las razones de esta característica no se conocen, así que es importante medir las propiedades de la antimateria con la gran precisión tal y como ha conseguido ahora el CERN.

EUROPA PRESS

miércoles, 9 de abril de 2014

El CERN confirma la existencia de hadrones exóticos

El CERN confirma la existencia de hadrones exóticos
La colaboración científica LHCb del CERN ha anunciado que han encontrado un hadrón muy raro denominado Z(4430). Los hadrones son partículas subatómicas formadas por quarks unidos por la interacción nuclear fuerte. Pueden ser bariones o mesones, pero ahora se incorpora este extraño tipo de materia que no es ninguno de los dos.

Los hadrones o partículas formadas por quarks, la matería que compone los átomos y a nosotros mismos, se clasifica en dos tipos: bariones (formados por tres quarks, como el protón y el neutrón del núcleo del átomo) y mesones (formados por un par quark-antiquark, su antipartícula). Sin embargo, la colaboración LHCb ha encontrado una evidencia incontrovertible de que existe una partícula, llamada Z(4430), con una masa aproximadamente cuatro veces la del protón, que tiene al menos cuatro quarks, dos quarks y dos antiquarks para ser exactos. Es decir, que no encaja en el esquema tradicional.

La evidencia hecha pública confirma un resultado anterior del experimento Belle (2008), pero ahora con una evidencia abrumadora. Los investigadores de LHCb han analizado más de 25.000 desintegraciones de mesones B, y los datos indican que Z(4430) se trata de un estado cuántico, una partícula verdadera, con un nivel de significancia estadística cercano a 14 sigma (la evidencia de que se trata de una verdadera observación y no el resultado de algún error en la medida).

Para Bernardo Adeva, investigador de la Universidad de Santiago de Compostela (USC) participante en el experimento LHCb, "hemos encontrado evidencias de nuevas formas de agregación de la materia, estados 'moleculares' constituidos por quarks más complejos de los que hasta ahora se conocían, que algunos denominan 'tetraquarks'. Dos de los quarks que componen este nuevo estado son del tipo charm (encanto, en inglés)".

"El resultado tiene gran importancia en el estudio de la cromodinámica cuántica (QCD), que estudia las interacciones fuertes o nucleares", continúa el investigador. La fuerza fuerte es una de las cuatro fuerzas fundamentales de la naturaleza, que permite que el núcleo atómico se mantenga unido.

No rompe la teoría pero revela aspectos nuevos

"Existían algunas conjeturas sobre la existencia de este tipo de estados 'exóticos' –añade–. Aunque el hallazgo no rompe con la teoría de QCD, revela aspectos de la teoría que ahora sabemos no son puramente especulativos, e impulsa enormemente la investigación teórica en esta dirección".

En este sentido, atendiendo a la relativamente elevada masa de este estado (del orden de la de un núcleo ligero), y a pesar de que no se trate de un barión (los núcleos del átomo están hechos de bariones, protones y neutrones), "el hallazgo concierne también al campo de la física nuclear o hadrónica".

La colaboración LHCb está formada por 670 científicos de 65 instituciones y 15 países, entre ellos España. Además de investigadores de la Universidad de Santiago de Compostela, participan científicos de la Universidad de Barcelona y la Universidad Ramón Llull. Recientemente se han incorporado a la colaboración investigadores del Instituto de Física Corpuscular (IFIC, CSIC-UV). La participación española en el LHC se coordina y promueve desde el CPAN.



CPAN / CERN | SINC

Twitter Delicious Facebook Digg Stumbleupon Favorites More