Recent Post

Astroparticulas

La Física de Astropartículas o Astrofísica de Partículas es un campo relativamente reciente de investigación que se dedica al estudio de las partículas elementales de origen astrofísico.

Fisica de particulas

La física de partículas es la rama de la física que estudia los componentes elementales de la materia y las interacciones entre ellos.

Cosmologia

Estudiar y determinar la naturaleza, energía y lugar de origen de los rayos cósmicos como vía para comprender mejor el origen del Universo.

Noticias

Noticias sobre Fisica de Particulas, Astrofisica y Fisica Nuclear.

Videos

Videos sobre Fisica de Particulas, Astrofisica y Fisica Nuclear.

sábado, 31 de marzo de 2012

Einstein no se equivocó sobre la expansión del Universo

Einstein no se equivocó sobre la expansión del Universo
La teoría de la relatividad de Albert Einstein es "increíblemente precisa", según un estudio publicado, que subraya lo acertados que fueron los cálculos del físico alemán a la hora de explicar la expansión del Universo.

Esta conclusión emerge de una investigación elaborada por un equipo de físicos de la Universidad de Portsmouth (sur de Inglaterra) y del Instituto Max Planck de Física Extraterrestre de Alemania, cuyos resultados fueron anunciados hoy en un encuentro nacional de astronomía en la Universidad inglesa de Manchester.

Así, la expansión del Universo podría explicarse mediante la teoría de Einstein y la constante cosmológica, una combinación que supone la respuesta "más sencilla" a este fenómeno, según los expertos.

Los investigadores se centraron en el período comprendido entre hace 5.000 y 6.000 millones de años, cuando el Universo era casi la mitad de antiguo que ahora, y llevaron a cabo mediciones con una precisión "extraordinaria".

La teoría de la relatividad de Einstein predice la velocidad por la que galaxias muy alejadas entre sí se expanden y se distancian entre sí, y la velocidad a la que el Universo debe de estar creciendo en la actualidad.

Estos resultados son, según la investigadora Rita Tojeiro, "la mejor medición de la distancia intergaláctica que se haya efectuado nunca, lo que significa que los cosmólogos estamos más cerca que en el pasado de comprender por qué la expansión del Universo se está acelerando".

En este proceso parece tener un gran protagonismo la energía del vacío, relacionada con el período inicial de la expansión, y según algunos astrofísicos también con la aceleración de la expansión del Universo.

En opinión de Tojeiro, lo mejor de la teoría general de la relatividad de Einstein es que se puede comprobar y que los datos obtenidos en este estudio "son totalmente consistentes" con la noción de que esta energía del vacío es la responsable.

Según los expertos, esta confirmación ayudará a los científicos a comprender mejor qué es lo que causa este misterioso proceso y por qué sucede.

También esperan avanzar en la investigación de la materia oscura, aquella que no emite suficiente radiación electromagnética para ser detectada con los medios técnicos actuales, pero cuya existencia se puede deducir a partir de los efectos gravitacionales que causa en la materia visible, tales como las estrellas o las galaxias.

Los físicos calculan que la materia oscura representa alrededor del 20 por ciento del Universo, y el estudio publicado hoy parece apoyar su existencia.

"Los resultados no muestran ninguna evidencia de que la energía oscura sea simplemente una ilusión fruto de nuestro pobre entendimiento de las leyes de la gravedad", añadió Tojeiro.

Una mejor comprensión de la materia oscura ayudaría a entender a su vez de qué están hechos los agujeros negros.

EFE

Un púlsar en la Nebulosa del Cangrejo arroja dudas sobre las teorías existentes

Un púlsar en la Nebulosa del Cangrejo arroja dudas sobre las teorías existentes
El púlsar en el corazón de la Nebulosa del Cangrejo bulle de energía. Los telescopios MAGIC en la isla canaria de La Palma lo han confirmado tras detectarlo en rayos gamma de 25 a 400 gigaelectronvoltios (GeV) una banda de energías que estaba prácticamente inexplorada hasta la fecha. Ahora MAGIC se ha encontrado con que las señales que emite esta estrella llegan hasta energías tan altas como 400 GeV, entre 50 y 100 veces más de lo que predice la teoría. Esto ha dejado perplejos a los científicos, porque podría apuntar a un proceso astrofísico aún desconocido.

La estrella de neutrones que alberga la Nebulosa del Cangrejo es uno de los púlsares más famosos. Rota alrededor de su eje 30 veces por segundo y tiene un campo magnético de 100 millones de teslas. Este campo magnético es un billón de veces más intenso que el de nuestro planeta. El púlsar, que está a 6000 años-luz de la Tierra, en la constelación de Tauro, es el motor de la Nebulosa del Cangrejo que le rodea. Tanto el púlsar como la nebulosa son los restos de una explosión de supernova que tuvo lugar el año 1054 y que llegó a ser tan brillante que se veía durante el día.

Púlsares a las mayores energías

Las estrellas de neutrones son objetos extraordinariamente densos con masas similares a las del Sol, pero con solo unos 10 kilómetros de diámetro. El periodo de rotación de un púlsar es extremadamente rápido y estable: un “día” en un púlsar puede durar entre 1 milisegundo y varios segundos. Mientras rota, la estrella de neutrones genera continuamente partículas cargadas, sobre todo electrones y positrones (electrones con carga positiva). Estas partículas viajan a lo largo de las líneas de campo magnético, que a su vez rotan a la misma velocidad que el púlsar. Las partículas producen un haz muy estrecho de radiación en gran parte del espectro electromagnético, desde ondas de radio hasta rayos gamma. Cuando este haz cruza la Tierra durante un breve instante, vemos un destello de radiación, similar a ver la luz del faro de un puerto desde la distancia. Por eso lo llamamos un púlsar.

En 2008, los telescopios MAGIC detectaron rayos gamma del púlsar del Cangrejo a energías de unos 25 GeV, que eran varias veces mayores que todo lo que se había medido hasta entonces. Los científicos concluyeron que esta radiación tenía que producirse a una altura de al menos 60 kilómetros por encima de la superficie del púlsar, porque los rayos gamma sufren una fuerte absorción en los campos magnéticos y desaparecerían a menor altura, donde el campo es muy intenso.

Los datos que ha obtenido MAGIC durante los últimos dos años, y que se publican hoy en la revista Astronomy & Astrophysics, muestran la presencia de emisión pulsada hasta energías de 400 GeV, algo que supera todas las expectativas teóricas. Además los pulsos son muy cortos: duran menos de un milisegundo. Las teorías de púlsares predecían energías máximas mucho más bajas y ahora se enfrentan a un grave problema.

Reto a la teoría

Los astrofísicos de MAGIC apuntan a que podría generarse una cascada de partículas en el púlsar, lo que podría producir rayos gamma de más alta energía. Una explicación alternativa, publicada recientemente en la revista Nature, conecta este descubrimiento con la física igualmente intrigante del viento oscuro de partículas que escapa del púlsar y acaba por generar la Nebulosa del Cangrejo.

Aún así, ninguno de estos modelos puede explicar ni unas energías tan extremas, ni unos pulsos tan cortos. Los astrofísicos esperan que observaciones futuras arrojen luz sobre este nuevo fenómeno. Esto nos ayudaría a comprender mejor esta clase de objetos astronómicos y, en particular, unos de sus ejemplos más conocidos: el púlsar y la nebulosa del Cangrejo.

El proyecto MAGIC

MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) se encuentra en el observatorio del Roque de los Muchachos (2200 metros de altitud) en la isla canaria de La Palma. Este sistema de dos telescopios, cada uno con un espejo de 17 metros de diámetro, es el instrumento más grande para la medida de rayos gamma de fuentes cósmicas a energías de 25 GeV-50 teraelectronvoltios (TeV). 1 GeV es una energía cerca de mil millones de veces mayor de la que tiene un fotón visible. Es también la energía necesaria para crear un átomo de hidrógeno según el mecanismo de conversión de energía en masa descrito por la famosa ecuación de Einstein E = mc 2 . 1 TeV son mil GeV.

Los rayos gamma penetran en nuestra atmósfera y producen avalanchas de partículas secundarias que emiten radiación de Cherenkov de color azulado. MAGIC mide los rayos gamma recogiendo esta radiación. MAGIC opera desde 2004 y ha descubierto las fuentes de rayos gamma de muy alta energía más lejanas.

MAGIC se construyó por el esfuerzo coordinado de una gran colaboración internacional compuesta por unos 160 investigadores de Alemania, España, Italia, Suiza, Polonia, Finlandia, Bulgaria, Croacia y Japón. Las siguientes instituciones españolas están activamente involucradas: Universidad Complutense de Madrid, Universitat Autònoma de Barcelona, Universitat de Barcelona, Institut de Física d'Altes Energies (IFAE), Institut de Ciencies de l'Espai (IEEC-CSIC), Instituto de Astrofísica de Andalucía (IAA-CSIC) e Instituto de Astrofísica de Canarias. MAGIC es financiado por el Ministerio de Economía y Competitividad y los proyectos Consolider Centro Nacional de Física de Partículas, Astropartículas y Nuclear (CPAN) y Multidark.

España es uno de los miembros fundadores de MAGIC y uno de los países con mayor peso dentro de la colaboración, como prueba el hecho de que en la actualidad está dirigida por un físico español: Juan Cortina, del IFAE de Barcelona.

Dentro del campo de los púlsares, las instituciones españolas han jugado un papel relevante, iniciando ya en el año 2000 los primeros estudios sobre la búsqueda de pulsares con MAGIC. Dos de los autores del trabajo publicado, Stefan Klepser y Gianluca Giavitto, trabajan en el IFAE y el coordinador del grupo de trabajo de púlsares, Marcos López, pertenece al grupo de la Universidad Complutense.

Instituto de Astrofísica de Canarias, IAC

sábado, 17 de marzo de 2012

Los neutrinos aclaran la simetría rota del universo

Los neutrinos aclaran la simetría rota del universo
Los neutrinos, esas fantasmagóricas partículas elementales que generan, por ejemplo, el Sol y los reactores nucleares en cantidades ingentes y que atraviesan la Tierra, las personas, y prácticamente todo lo que se encuentran sin delatar su presencia, protagonizan el último descubrimiento que ha puesto en efervescencia a la comunidad internacional de física de partículas. Técnicamente es una medida de una característica de estas partículas, pero puede convertirse en la llave para desvelar uno de los grandes misterios del universo: por qué está hecho ahora de materia y no de antimateria.

El hallazgo tiene todos los ingredientes de las grandes historias de la ciencia, con dura competición internacional entre grupos nutridos de físicos para hacerse con el trofeo del descubrimiento, sorpresa con el equipo que se hace con la primicia y alguna dosis de drama, ya que el terremoto y el tsunami que asolaron una extensa región de Japón hace ahora un año inutilizaron el laboratorio japonés que estaba en la carrera y que era uno de los fuertes competidores.

Además, el éxito se lo ha apuntado el experimento de Daya Bay, en China, lo que significa, como ha señalado Science, que la potencia asiática “ya ha llegado a la física de partículas”, sin olvidar la importante participación de especialistas de varias instituciones estadounidenses.

Conviene aclarar cuanto antes que este resultado no tiene nada que ver con la supuesta velocidad superior a la de la luz de los neutrinos que los científicos del detector Opera (en Italia) anunciaron el año pasado y que parece ser un error debido a una conexión defectuosa en la electrónica del experimento.

En Daya Bay hay seis grandes detectores para captar y estudiar los neutrinos generados en los reactores nucleares del conjunto de Daya Bay. Es similar al experimento francés Double Chooz, que ya avanzó el pasado noviembre datos parecidos pero no tan rotundos como para cantar victoria, con lo que Daya Bay, y para sorpresa general porque no se esperaban sus resultados tan rápido, se ha apuntado el tanto.

El parámetro que han logrado medir y el valor obtenido “es importante para entender cuantitativamente cómo, a partir de la sopa primordial que se generó tras el Big Bang —sopa en la que había una cantidad equivalente de materia y antimateria— hemos acabado en este universo en el que vivimos, que está hecho de la materia y apenas hay antimateria”, explica desde Estados Unidos Concha González-García, investigadora del ICREA (Universidad de Barcelona) y de la Universidad de Stony Brook. “Ese comportamiento diferente sería como una semilla que se propaga por todo el universo, como un grumo que acaba decantando la sopa, de manera que ahora solo hay materia primordial”, añade Belén Gavela, catedrática de Física Teórica (Universidad Autónoma de Madrid).

“Si la simetría entre partículas y antipartículas no estuviera rota, con la misma cantidad de materia que de antimateria, y dado que tienden a aniquilarse mutuamente, nunca se habrían formado en el universo galaxias, estrellas, planetas ni vida”, señala Enrique Fernández Martínez desde el Laboratorio Europeo de Física de Partículas (CERN).

Para entender el experimento de Daya Bay hay que entrar un poco en el extraño y fascinante mundo de la mecánica cuántica, donde las cosas, casi siempre, distan mucho de ser lo que parecen. En este caso se trata de medir un ingrediente de esas partículas elementales, los neutrinos, que se dan en tres tipos o sabores, como dicen los físicos. Ese ingrediente es determinante en la peculiar propiedad que tienen los neutrinos de transformarse los de un tipo en otro cuando recorren una distancia.

Alicia Rivera | ELPAIS.com

viernes, 16 de marzo de 2012

La alta energía de rotación de los magnetares alimenta sus emisiones en radio

La alta energía de rotación de los magnetares alimenta sus emisiones en radio
Un equipo europeo de investigadores liderado por el Consejo Superior de Investigaciones Científicas (CSIC) ha descubierto que la alta energía de rotación alimenta las emisiones en radio de los magnetares, un tipo de estrellas de neutrones con campos magnéticos muy elevados. Este mecanismo sería, por tanto, muy similar al que se produce en los radiopúlsares, estrellas de neutrones que emiten pulsos regulares detectables con un radiotelescopio.

El estudio, publicado en la revista Astrophysical Journal Letter y destacado en el último número de Science en su Editor’s choice, se ha basado en el análisis de unos 1.000 radiopúlsares y cerca de 20 magnetares descubiertos hasta el momento. Aunque ambos objetos estelares comparten su formación a partir de la explosión de una supernova, los magnetares se caracterizan por tener un campo magnético elevado y por expulsar en cortos periodos de tiempo de enormes cantidades de energía en forma de rayos X y rayos gamma.

Hasta hace poco, las propiedades que definían un magnetar eran, entre otras, la no emisión en radio y la existencia en la superficie de los polos de campos magnéticos por encima de un valor crítico. “Se creía que los magnetares eran accionados por su energía magnética y no por su rotación. El descubrimiento el año pasado de púlsares en radio frecuencia y de un magnetar de bajo campo magnético apunta a que no existe una separación limpia entre los radiopúlsares y los magnetares. Es más: es muy probable que un radiopúlsar pueda albergar en su centro un magnetar”, explica la investigadora del CSIC en el Instituto de Ciencias del Espacio de Barcelona Nanda Rea.

Nueva herramienta

El trabajo de Rea y su equipo, integrado por científicos del Instituto de Ciencias del Espacio (CSIC), de las universidades de Alicante y Padua (Italia) y de la Institució Catalana de Recerca i Estudis Avançats, profundiza en esta hipótesis y propone que la actividad o inactividad en radio del magnetar puede predecirse partiendo del conocimiento del periodo de rotación de la estrella, su derivada en el tiempo y la luminosidad de rayos X en reposo. “Estos parámetros se derivan generalmente muy pronto después del descubrimiento de un nuevo magnetar; por tanto, con esta herramienta de predicción será más fácil decidir si se ha de emplear un radiotelescopio cuando se descubre un magnetar nuevo o si no vale la pena”, señala la investigadora del CSIC.

Según los científicos, llegar a comprender el mecanismo de emisión en radio de los magnetares es crucial para obtener una imagen completa de las estrellas de neutrones que pueblan el Universo. “Son los mejores superconductores y superfluidos y proporcionan un entorno único donde probar el estado de la materia bajo las condiciones magnéticas más extremas”, destaca Rea.

CSIC

Un experimento corrobora que los neutrinos no viajan más rápido que la luz

Un experimento corrobora que los neutrinos no viajan más rápido que la luz
Un experimento del laboratorio italiano de Gran Sasso ha confirmado que los neutrinos no son más veloces que la luz, según ha anunciado el Centro Europeo de Física de Partículas (CERN).

Estos resultados refutan las polémicas conclusiones preliminares del experimento OPERA, del mismo laboratorio, que detectó neutrinos que supuestamente viajaban veinte nanosegundos más rápido que la luz, algo que contradecía la Teoría de la Relatividad de Einstein y servía para alimentar la fantasía de los viajes en el tiempo.

El laboratorio de Gran Sasso registró medidas de neutrinos "que concuerdan con la velocidad de la luz". "Esto indica que los neutrinos no exceden la velocidad de la luz en su viaje entre los dos laboratorios (situados a 730 kilómetros de distancia)", precisó el CERN a través de un comunicado.

El director de investigación del CERN, Sergio Bertolucci, opinó que estos nuevos datos refuerzan la idea de que los anteriores resultados del experimento OPERA incurrieron en un "error en la medición". "Los experimentos BOREXINO, ICARUS, LVD y OPERA del laboratorio de Gran Sasso continuarán efectuando nuevas medidas con los haces de neutrinos pulsados desde el CERN en mayo para darnos el veredicto final", agregó Bertolucci.

"El experimento ICARUS ha aportado una verificación cruzada del resultado anómalo de OPERA del pasado año", dijo por su parte el portavoz del ICARUS y ganador del Premio Nobel de Física en 1984, Carlo Rubbia.

Ese experimento tiene un dispositivo de medida de tiempo independiente de OPERA y según las mediciones comunicadas este viernes los neutrinos llegan a un tiempo "consistente con la velocidad de la luz".

Rubbia explicó que la Cámara de Proyección de Argón Líquido de la que dispone ICARUS para medir las interacciones de los neutrinos es un "detector novel" que permite "una detallada reconstrucción de las interacciones, comparable a la de las antiguas cámaras de burbujas con sistemas electrónicos completos".

Los responsables del experimento OPERA ya habían anunciado en febrero pasado que los resultados de neutrinos más rápidos que la luz pudieron deberse a una serie de problemas técnicos en los aparatos de medida.

Una mala conexión de un cable de fibra óptica y la errónea sincronización entre dos cronómetros explicarían esos resultados, que conmocionaron a la comunidad científica.

EFE

sábado, 10 de marzo de 2012

Terzan 5, la estrella de neutrones que 'obedece' a los astrofísicos

Terzan 5, la estrella de neutrones que 'obedece' a los astrofísicos
Una investigación liderada por el español Manu Linares, del MIT, ha descubierto la primera estrella de neutrones que explosiona conforme al modelo teórico previsto en la década de los 70. El hallazgo revela detalles inéditos sobre la importancia de la rotación en las explosiones estelares.

Los físicos recelan de los detalles que no terminan de encajar. No pueden ignorarlos por pequeños que sean. Les hacen temer la existencia de algún error fundamental en sus modelos y teorías. Por eso tras más de tres decenios de incertidumbre, los expertos en estrellas de neutrones respiran un poco más tranquilos gracias al estudio publicado en The Astrophysical Journal por el español Manu Linares desde el Instituto Tecnológico de Massachusetts (MIT, por sus siglas en inglés).

El misterio que entramaban las estrellas de neutrones era el siguiente: desde los años 70 los astrofísicos las han estado estudiando a partir de las explosiones que se producen en sus capas externas. Pero las estrellas de neutrones no explotaban como ellos pensaban que debían hacerlo. Hasta que por fin Terzan 5, la que ha estudiado Linares, les ha dado una alegría.

Bombas de energía

Las estrellas de neutrones son el objeto observable más denso que existe en el universo. Son masas parecidas a nuestro Sol pero comprimidas en un radio de 8 a 15 kilómetros. En su interior la fuerza de la gravedad es billones de veces mayor a la terrestre. La descomunal presión compacta los átomos hasta que protones y electrones se funden formando neutrones. La temperatura y densidad son tan extremas que estos neutrones podrían llegar a romperse y dejar libres sus quarks.

A los astrofísicos les interesan sobremanera porque sus condiciones no existen en ningún otro lugar del universo observable. “Es como un laboratorio natural que nos permite investigar las leyes de la física en un rango de energías, densidades y campos magnéticos inalcanzables en la Tierra“, explica Manu Linares a SINC.

Círculo vicioso hasta la explosión

Cuando una estrella de neutrones se encuentra cerca de otra estrella convencional, va absorbiendo plasma de sus capas exteriores que se irá compactando en la superficie de la estrella de neutrones a razón de hasta 100 kilogramos de materia por segundo y centímetro cuadrado. A medida que esta materia se va acumulando, la densidad se hace más intensa, la temperatura crece, y se empiezan a producir violentas reacciones termonucleares.

Los átomos de hidrógeno se fusionan en helio, y los de helio llegan a fusionarse en átomos más pesados. Son condiciones extremas, pero durante un tiempo el proceso es estable: la energía se va disipando de la estrella al mismo ritmo que se genera.

Sin embargo, cuando se alcanza una masa crítica en la superficie de la estrella de neutrones, estas reacciones pasan a ser inestables: se produce energía más rápido de lo que puede escapar.

Entonces el proceso se acelera de manera dramática y se entra en un círculo vicioso: más reacciones de fusión, mayor densidad, más temperatura; más reacciones de fusión, mayor densidad, más temperatura; hasta que en cuestión de segundos se produce una brutal explosión que, entre otras cosas, genera los rayos X que los astrofísicos utilizan para investigar las estrellas de neutrones.

Ahora bien, es de suponer que cuanto más rápido se acumule materia en la superficie de la estrella, antes se alcanzará la masa crítica y más frecuentes serán las explosiones. Sin embargo, en 100 estrellas de neutrones investigadas desde los años 70 hasta la fecha, esto nunca se había cumplido hasta el trabajo de Manu Linares.

“Lo que observábamos era que cuando la acreción de material era lenta, sí se producían las explosiones tal y como el modelo predecía. Pero cuando se acumulaba de manera rápida, las explosiones eran menos frecuentes o incluso inexistentes. Y no entendíamos por qué”, explica Linares.

La rotación es la clave

En el estudio publicado el 20 de marzo de 2012 en The Astrophysical Journal, los investigadores del MIT, de la Universidad McGill, la de Minnesota y la de Amsterdam proponen una explicación al misterio de la falta de explosiones.

“La clave está en la rotación”, explica Linares. “Todas las estrellas de neutrones investigadas hasta la fecha giraban con una frecuencia de entre 200 y 600 rotaciones por segundo. En cambio Terzan 5 lo hace solo a 11 rotaciones por segundo”.

Terzan 5 es la primera estrella de neutrones que se comporta tal y como la teoría predice: a mayor ritmo de acreción, explosiones más frecuentes. Y la principal diferencia con las observadas hasta el momento es su relativamente lenta velocidad de rotación.

"Esto nos fuerza a pensar que en nuestros modelos para describir estrellas de neutrones hemos infravalorado la rotación”, matiza Linares. Esto forzará una revisión de los modelos actuales.

Los detalles importan

Hay varias hipótesis para explicar por qué altas velocidades de rotación impiden las explosiones en estrellas de neutrones. Podría ser que a mayor rotación la fricción entre capas generara un aumento localizado de temperatura que afectara a las reacciones termonucleares. Otra opción es la aparición de turbulencias que mezclen el contenido de capas superiores e interiores.

Manu insiste en que “entender el origen de las explosiones termonucleares es fundamental porque es justo lo que utilizamos para investigar el interior de las estrellas de neutrones”.

No entendemos bien cómo se comporta la materia a energías tan elevadas como las del interior de una estrella de neutrones. Un detalle como conocer su tamaño exacto nos puede dar indicios del grado de compactación de las partículas y servir para ver si nuestras leyes físicas se cumplen en esas condiciones.

“La naturaleza nos brinda un laboratorio único, pero para poder sacar conclusiones debemos comprender bien cómo funciona el experimento”, concluye Linares.

Pere Estupinyà | SINC

jueves, 8 de marzo de 2012

Tevatron arroja indicios de avistamiento del bosón de Higgs

Tevatron arroja indicios de avistamiento del bosón de Higgs
El acelerador de partículas Tevatron, ubicado en Chicago, está acorralando al esquivo bosón de Higgs. Los dos experimentos que se desarrollan en la instalación científica del Fermilab, laboratorio del Departamento de Energía del gobierno estadounidense, arrojan indicios de avistamiento que no contradicen los datos logrados recientemente en el CERN de Ginebra, donde se sitúa el acelerador más grande del mundo, el Gran Colisionador de Hadrones (LHC).

Tras décadas de búsqueda, los científicos están cada vez más cerca de determinar la existencia o no de la partícula, fundamental para confirmar nuestra concepción actual del universo, ha informado la Universidad de Cantabria en un comunicado.

"Es un resultado magnífico y complementa de forma perfecta el trabajo que se hizo en el LHC", explica Alberto Ruiz Jimeno, jefe del Grupo de Altas Energías del Instituto de Física de Cantabria (IFCA). Un equipo de este centro mixto Universidad de Cantabria-CSIC ha liderado, junto con la Universidad de Oviedo, una parte muy importante del análisis de datos del experimento CDF, uno de los dos que se desarrollan en el Tevatron. Otros laboratorios españoles, como el IFAE de Barcelona y el CIEMAT de Madrid, han realizado análisis complementarios del mismo experimento.

El director del Fermilab, Pier Oddone, ha destacado la contribución de científicos de todo el mundo, que durante años han analizado cientos de miles de millones de colisiones protón-antiprotón registradas por los experimentos CDF y DZero para llegar a este "excitante resultado". "Estoy entusiasmado con el ritmo de los avances", ha dicho en el marco del congreso anual sobre las interacciones electrodébil y teorías unificadas, conocido como "Encuentros de Moriond", en Italia.

Los investigadores cántabros también participan activamente en los proyectos del LHC. Los dos aceleradores hacen colisionar diferentes pares de partículas y a energías diferentes, produciendo varios tipos de fondos y dando como resultado una búsqueda complementaria. Es como cuando dos personas hacen una foto de un parque desde diferentes posiciones: una imagen puede mostrar a un niño que, desde la otra posición, está semioculto por un árbol; ambas imágenes pueden mostrar al niño, pero sólo una puede resolver sobre sus rasgos, por ello es necesario combinar ambos puntos de vista para obtener una imagen real de lo que hay en el parque.

"Todavía hay mucho trabajo por delante antes de que la comunidad científica pueda decir con seguridad si existe el bosón de Higgs", ha señalado Dmitri Denisov, co-portavoz de DZero y físico en el Fermilab. "En base a las señales obtenidas, estamos trabajando lo más rápido posible para seguir mejorando nuestros métodos de análisis y exprimir hasta la última gota los datos del Tevatron". Por el momento, las dos imágenes obtenidas por los aceleradores son "borrosas", pero los científicos afirman que las futuras tomas de datos en el LHC serán capaces de arrojar una imagen nítida, y también el Tevatron afinará su visión.

"Si no se hubiera obtenido una señal, el Modelo Estándar estaría herido pero, una vez más, se manifiesta con fuerza extraordinaria", comenta Alberto Ruiz Jimeno. "Va a resultar muy interesante y difícil buscar experimentalmente la brecha en esta teoría que, por otros argumentos cosmológicos y teóricos, sabemos que no puede ser el punto final de la historia de la Física. En todo caso, si confirmamos la existencia del bosón de Higgs a esta masa, en torno a 125 GeV, aún tendremos que mostrar si se trata o no del Higgs del Modelo Estándar o un Higgs supersimétrico".

Los científicos de las colaboraciones CDF y DZero han utilizado diferentes técnicas de búsqueda y han encontrado excesos en sus datos que pueden ser interpretados como procedentes de un bosón de Higgs con una masa en la región de 115 a 135 GeV. El nuevo resultado excluye la posibilidad de que el bosón de Higgs tenga una masa en el rango de 147 a 179 GeV y mantiene como posible la evidencia de una nueva partícula, ya que la fluctuación estadística está dentro del rango establecido.

El resultado se asienta bien dentro de los estrictos límites establecidos por las mediciones anteriores, directas e indirectas, realizadas por el LHC, el Tevatron y otros aceleradores. Sin embargo, ninguna de las señales anunciadas hasta la fecha son lo suficientemente fuertes para reclamar evidencia de descubrimiento del bosón de Higgs.

Sólo los colisionadores de partículas de alta energía como el Tevatron y el LHC pueden volver a recrear las condiciones energéticas que existían en el universo poco después del Big Bang. De acuerdo con el Modelo Estándar, el bosón de Higgs da masa a otras partículas. Los físicos han sabido durante mucho tiempo que esta partícula o algo parecido debe existir, por ello esperan con inquietud confirmar finalmente este fenómeno.

EUROPA PRESS

Científicos del CERN consiguen mirar por primera vez dentro de la antimateria

Científicos del CERN consiguen mirar por primera vez dentro de la antimateria
Científicos del Centro Europeo de Investigación Nuclear (CERN) han conseguido "mirar" por primera vez dentro de la antimateria gracias a la obtención de una medida espectroscópica del antihidrógeno, procedimiento que ofrece información inédita hasta ahora sobre su estructura interna.

El portavoz del experimento ALPHA, Jeffrey Hangst, ha anunciado que se ha conseguido realizar "la primera, aunque modesta", medida del espectro de este antiátomo, un "avance enorme" en el camino para descifrar uno de los misterios más profundos de la física de partículas y quizá para entender la existencia misma del Universo.

"Lo que estamos haciendo es mirar dentro de la antimateria, dentro de un átomo de materia, por primera vez. Estamos estudiándolo de la misma manera que los físicos atómicos han estudiado el hidrógeno, el helio y otros átomos en la tabla periódica, y estamos tratando el átomo de antimateria de la misma manera", afirmó.

"Es un paso enorme porque nunca lo habíamos podido hacer hasta ahora", añadió Hangst, cuyas conclusiones se publican de manera extensa en el último número de la revista científica "Nature".

Vivimos en un Universo aparentemente formado únicamente de materia, pese a que antes del Big Bang (la explosión que dio origen al Universo hace 14.000 millones de años) la materia y la antimateria existieron en la misma proporción.

Por lo tanto, adentrarse en la estructura de la segunda es adentrarse en lo desconocido y desafiar las leyes físicas vigentes.

La medida del espectro del antihidrógeno realizada en el CERN es un nuevo hito en el estudio de las propiedades de los átomos de antimateria, ya que permite comparar al hidrógeno con su equivalente de la antimateria y podría sugerir "por qué la naturaleza tuvo una preferencia por la materia sobre la antimateria".

"Hemos demostrado que podemos probar la estructura interna del antihidrógeno y ahora sabemos que es posible diseñar experimentos para hacer una medida detallada de los antiátomos", indicó Hangst.

El Modelo Estándar de Física establece que el hidrógeno y su antiátomo deberían poseer un espectro idéntico, algo que cumplen las medidas efectuadas hasta ahora.

El responsable de ALPHA explicó que el objetivo es confirmar o descartar que existe una diferencia entre los dos espectros, para establecer si el Modelo Estándar -la teoría que describe las interacciones fundamentales conocidas entre las partículas que componen la materia- es aplicable también a la antimateria.

"Esta es la primera medida espectroscópica que se ha conseguido. Hemos repetido el experimento unas 300 veces para obtener un resultado", manifestó, que indicó que durante los próximos años se trabajará en mejorar la exactitud de las medidas.

"Con la precisión actual no es posible apreciar diferencias entre las medidas de hidrógeno y antihidrógeno, por lo que en el futuro también emplearemos otros mecanismos de medida, como el láser", dijo.

En el experimento ALPHA, los átomos de antihidrógeno son atrapados por campos magnéticos que, expuestos a radiaciones de microondas de una frecuencia determinada, logran modificar la orientación magnética de los antiátomos.

Esta alteración tiene como efecto la liberación del antihidrógeno de "la trampa" en la que se encuentra, que entonces entra en contacto con la materia y se aniquila, dejando unas "huellas" características dentro de los detectores que rodean "la trampa".

El pasado mes de junio el experimento ALPHA logró atrapar por primera vez átomos de antimateria durante más de dieciséis minutos, un tiempo suficiente para empezar a estudiar sus propiedades.

EFE

sábado, 3 de marzo de 2012

Nuevos datos desde el LHC sobre por qué la materia venció a la antimateria

Nuevos datos desde el LHC sobre por qué la materia venció a la antimateria
Uno de los detectores del Gran Colisionador de Hadrones (LHC), el LHCb, ha observado por primera vez la ruptura de la simetría entre materia y antimateria en la desintegración de la partícula conocida como mesón Bs. Hasta ahora solo se había observado este fenómeno en las desintegraciones de otro mesón, lo que supuso el Nobel de 2008 a Kobayashi y Maskawa. En el estudio han participado investigadores de las Universidades de Santiago de Compostela, Barcelona y Ramón Llull.

El experimento LHCb del Gran Colisionador de Hadrones (LHC) ha publicado la primera observación directa de la ruptura de la simetría materia/antimateria (fenómeno que se conoce en Física como “violación CP”) en las desintegraciones del mesón Bs. Es la primera vez que se observa este fenómeno en este tipo de partícula.

Hasta ahora se había observado el fenómeno en otra partícula similar, hallazgo que le valió el premio Nobel a los físicos japoneses Kobayashi y Maskawa en 2008. Los científicos de la colaboración LHCb, entre los que hay grupos de la Universidad de Santiago de Compostela (USC), Universidad de Barcelona (UB) y la Universidad Ramón Llull (URL), han publicado los resultados en el repositorio digital arXiv y enviado a la revista Physical Review Letters.

El experimento LHCb está diseñado para estudiar la ruptura de la simetría entre materia y antimateria. Según la teoría, en el Big Bang se crearon iguales cantidades de materia y de antimateria, una especie de réplica idéntica a la materia en todo excepto en su carga eléctrica, que es negativa. Si se mantuviese la simetría, materia y antimateria debieron aniquilarse entre sí, pero en algún punto se produjo una asimetría, la materia “venció” a la antimateria y formó los átomos que componen galaxias, estrellas, planetas y todo lo que existe. Los científicos aún no saben por qué.

Los quarks, que junto con los leptones son los ‘ladrillos’ que componen la materia que conocemos, se agrupan en tres formas básicas o réplicas. La primera forma la materia ordinaria de la que estamos compuestos, básicamente protones y neutrones. Las otras dos están formadas por el quark charm (c) y el strange (s), y por los quarks muy pesados como el beauty (b) y el top (t).

LHCb ha observado por primera vez de forma directa la ruptura de la simetría CP en las desintegraciones del mesón Bs, que contiene en su composición un quark pesado beauty (b) y un antiquark strange (s). Puede verse a simple vista en los datos tomados en 2011 por LHCb cómo el ritmo de desintegración de este mesón y el de su antipartícula difieren en una cantidad del 27%, lo que supone una significacion estadística superior a tres desviaciones típicas o sigmas, que los científicos consideran suficiente para mostrar una primera evidencia de esta asimetría.

La observación de LHCb tiene gran importancia porque es la primera vez que se observa la ruptura directa de la simetría materia/antimateria en transiciones entre quarks que involucran todas las formas conocidas. Hasta ahora se conocía la falta de simetría CP directa en las desintegraciones de otro mesón formado por el quark b, el B0, cuyas observaciones le valieron el Premio Nobel a los físicos japoneses Kobayashi y Maskawa en el año 2008. Estos científicos habían postulado que el origen de la falta de simetría materia/antimateria se encontraba precisamente en la existencia de distintas réplicas de quarks.

Intensas asimetrías materia-antimateria

El hallazgo realizado por LHCb es especialmente importante porque pone de manifiesto que las asimetrías materia-antimateria observadas en las desintegraciones de los quarks b siguen siendo muy intensas cuando se observan otras réplicas distintas de las observadas hasta ahora. Es pronto para saber con exactitud si las medidas realizadas encajan bien dentro del Modelo Estándar de Física de Partículas, la teoría que describe las partículas fundamentales y sus interacciones, o bien suponen nueva física, ya que ello requiere cálculos teóricos detallados y comparaciones con otras medidas relacionadas.

La teoría de Kabayashi-Maskawa del Modelo Estándar tiene un déficit importante a la hora de explicar la creación de las galaxias, formadas casi exclusivamente por materia, sin apenas antimateria. Las medidas actuales proporcionan nueva evidencia de una violación CP elevada en réplicas de quarks hasta ahora inexploradas.

Junto con los resultados anteriormente citados, el experimento LHCb presenta en esta misma publicación nuevas medidas de la asimetría materia/antimateria en el mesón B0, de producción más abundante en el LHC que el mesón Bs. Estas medidas superan en precisión cualquiera de las existentes hasta la fecha y confirman una asimetría de -8.9% para este mesón. Solo un análisis detallado de éstas medidas en su conjunto permitirá saber hasta qué punto el Modelo Estándar permite describir los datos.

El mesón Bs es objeto preferente de estudio en el experimento LHCb del Laboratorio Europeo de Física de Partículas (CERN). Durante el año 2011 y en 2012, LHCb ha publicado el descubrimiento de varias nuevas desintegraciones del mesón Bs, entre ellas su desintegración en un par de partículas extrañas y neutras, realizada por el grupo de la Universidad de Santiago de Compostela y publicada en Physics Letters B. La colaboración LHCb la forman 52 instituciones de distintos países, entre ellas la Universidad de Santiago de Compostela, la Universidad de Barcelona y la Universidad Ramón Llull.

La participación española en el LHC se promueve a través del Centro Nacional de Física de Partículas, Astropartículas y Nuclear (CPAN), proyecto Consolider-Ingenio 2010 cuyos principales objetivos son la promoción y coordinación científica de la participación española en proyectos internacionales, el desarrollo de actividades comunes de I+D y la formación e incorporación a los grupos de nuevos investigadores y técnicos. El CPAN pretende consolidar estas actuaciones mediante la constitución de un centro en red de carácter permanente, análogo a los existentes en otros países de nuestro entorno.

CPAN | SINC

Twitter Delicious Facebook Digg Stumbleupon Favorites More