Recent Post

Astroparticulas

La Física de Astropartículas o Astrofísica de Partículas es un campo relativamente reciente de investigación que se dedica al estudio de las partículas elementales de origen astrofísico.

Fisica de particulas

La física de partículas es la rama de la física que estudia los componentes elementales de la materia y las interacciones entre ellos.

Cosmologia

Estudiar y determinar la naturaleza, energía y lugar de origen de los rayos cósmicos como vía para comprender mejor el origen del Universo.

Noticias

Noticias sobre Fisica de Particulas, Astrofisica y Fisica Nuclear.

Videos

Videos sobre Fisica de Particulas, Astrofisica y Fisica Nuclear.

domingo, 31 de marzo de 2013

Nuevos detalles de los defectos de los nanomateriales

Nuevos detalles de los defectos de los nanomateriales 
Un equipo de científicos de la Universidad de California Los Angeles (UCLA) y la Universidad de Northwestern ha producido imágenes y vídeos en 3-D de una nanopartícula de platino con una resolución atómica que revela nuevos detalles de los defectos de los nanomateriales nunca vistos hasta ahora. El estudio aparece publicado en la revista Nature.

Antes de este trabajo, los científicos sólo tenían planos e imágenes en dos dimensiones con los que ver la disposición de los átomos. La nueva metodología de obtención de imágenes permitirá a los investigadores aprender más sobre un material y sus propiedades mediante la visualización de átomos desde diferentes ángulos y comprender cómo se organizan en tres dimensiones.

Los autores pueden ver cómo los átomos de una nanopartícula de platino -solo 10 nanómetros de diámetro- se disponen en tres dimensiones. También identifican cómo los átomos están dispuestos alrededor de los defectos en la nanopartícula.

Similar a las tomografías computarizadas del cerebro y el cuerpo que se hacen en un hospital, los científicos tomaron imágenes de una nanopartícula de platino desde muchas direcciones diferentes y luego reconstruyeron las imágenes junto con un nuevo método que mejora su calidad.

«La visualización de la disposición de los átomos en los materiales ha jugado un papel importante en la evolución de la ciencia moderna y la tecnología», dice Jianwei (John) Miao, profesor de física y astronomía de la UCLA y responsable del estudio.

El nuevo método permitirá aplicaciones en ciencias de los materiales, nanociencia, física y química del estado sólido.

ABC.es

domingo, 24 de marzo de 2013

Los ‘estrellamotos’ desnudan el interior de las estrellas de neutrones

Los ‘estrellamotos’ desnudan el interior de las estrellas de neutrones 
Un equipo europeo, con participación de la Universidad de Valencia, ha desarrollado los primeros modelos numéricos que analizan las vibraciones de los 'terremotos' que se produce en algunas estrellas de neutrones. Parece que para que se originen es necesario que los neutrones fluyan libremente por el interior de la estrella, según los datos presentados esta semana en la III Reunión Ibérica de Ondas Gravitatorias.

El fenómeno conocido como ‘estrellamoto’ (starquake, en inglés) es típico de estrellas de neutrones con un enorme campo magnético, más conocidas como magnetares. Astrofísicos de la Universidad de Valencia (UV) han conseguido obtener los primeros modelos numéricos que explican sus oscilaciones.

Estas estrellas presentan flashes de rayos gamma de manera esporádica, que se cree relacionados con reestructuraciones del campo magnético que rompen su corteza –los ‘estrellamotos’– al liberar, en unos pocos segundos, una cantidad de energía equivalente a la emitida por el Sol en mil años.

“Los resultados de todas las oscilaciones observadas en los flashes sugieren que es necesario que el interior de las estrellas de neutrones sea superfluido, es decir, que los neutrones fluyan libremente sin ninguna fricción”, comenta Michael Gabler, coautor del trabajo.

Durante dos años, astrónomos de la UV, del Instituto Max-Plank de Astrofísica (Alemania) y de la Universidad de Salónica (Grecia) han efecturado simulaciones considerando el interior fluido, la corteza sólida y un campo magnético intenso, para descubrir bajo qué condiciones se producen las vibraciones que se observan. Las conclusiones se presentan ahora en la III Reunión Ibérica de Ondas Gravitatorias en Valencia.

El análisis de los flashes más fuertes de los ‘estrellamotos’ ha revelado oscilaciones periódicas que los expertos creen podrían estar relacionadas con diversos modos de vibración del magnetar.

“El estudio de estas vibraciones puede darnos información sobre la estructura del interior de las estrellas de neutrones y sobre el comportamiento de la materia nuclear a altas densidades, algo que no se puede hacer en los laboratorios terrestres”, apunta Gabler.

“Del mismo modo que los terremotos en la Tierra proporcionan datos sobre la estructura del interior de nuestro planeta, fenómenos similares como los ‘estrellamotos’ podrían aportar información sobre el interior de las estrellas de neutrones”, subraya otro de los autores, José Antonio Font.

Estrellas de neutrones y radiación gravitatoria

Entre las fuentes astrofísicas de radiación gravitatoria más importantes se encuentran las estrellas de neutrones y los procesos catastróficos que se asocian con su creación, como las explosiones de supernova, o la emisión de erupciones de radiación gamma de alta energía asociada con la rotura de su corteza externa.

La radiación gravitatoria es la última de las predicciones de la teoría de la relatividad general de Einstein que todavía permanece sin comprobar desde su formulación en 1915.

“Esta radiación se asocia a ondulaciones del espacio-tiempo originadas por la aceleración de grandes cantidades de materia, como las colisiones de agujeros negros, estrellas de neutrones o las explosiones de supernovas”, añade otro de los autores, Pablo Cerdá Durán.

“Y estas olas del espacio-tiempo viajan hasta la Tierra y llevan con ellas información sobre sus orígenes”, prosigue el investigador, quien advierte que la detección de esta radiación, de naturaleza y propiedades distintas a las ondas electromagnéticas, “puede provocar una revolución de nuestra comprensión del universo”.

UV | SINC

viernes, 22 de marzo de 2013

Se descubre la fuente de energía del viento solar

Se descubre la fuente de energía del viento solar 
Usando datos de una veterana nave espacial de la NASA, investigadores han encontrado indicios de una fuente de energía en el viento solar que ha captado la atención de quienes investigan en el campo de la fusión. La NASA podrá poner a prueba esta nueva teoría más adelante, en el transcurso de esta década, cuando envíe una nueva sonda hacia el Sol con el fin de realizar observaciones de cerca.

El descubrimiento fue realizado por un grupo de astrónomos que intentaba resolver un misterio que tiene décadas: ¿qué es lo que calienta y acelera el viento solar?

El viento solar es un flujo caliente y de alta velocidad de gas magnetizado, que emana de la parte superior de la atmósfera del Sol. Está compuesto de iones de hidrógeno y helio, y una pizca de elementos más pesados. Los investigadores lo comparan con el vapor de una olla de agua hirviendo sobre una estufa; de hecho, el Sol se está evaporando, literalmente.

"Sin embargo", dice Adam Szabo, del Centro Goddard para Vuelos Espaciales (Goddard Space Flight Center, en idioma inglés), "el viento solar hace algo que el vapor en su cocina nunca hace. Conforme el vapor sale de una olla y se eleva, se desacelera y se enfría. Pero cuando el viento solar se aleja del Sol, se acelera, y triplica su velocidad tras su paso a través de la corona. Además, algo dentro del viento solar continúa calentándolo a medida que fluye hacia el frío del espacio".

Encontrar ese "algo" ha sido una meta de los investigadores durante décadas. En las décadas de 1970 y 1980, las observaciones de las dos naves espaciales Helios, de propiedad de Alemania y Estados Unidos, permitieron formular las primeras teorías, las cuales usualmente incluían alguna combinación de inestabilidades del plasma, ondas magnetohidrodinámicas y calentamiento turbulento. Reducir el número de posibilidades fue todo un reto. Al parecer, la respuesta yacía escondida en un conjunto de datos de una de las naves espaciales más viejas de la NASA que aún funciona, una sonda solar llamada Wind (Viento, en idioma español).

Lanzada en 1994, Wind es tan antigua que emplea cintas magnéticas similares a las anticuadas cintas de 8 pistas para registrar y reproducir sus datos. Equipada con un grueso blindaje y sistemas doblemente redundantes para evitar cualquier falla, la nave espacial fue hecha para durar; al menos un investigador de la NASA se ha referido a ella como la "Battlestar Galactica" de la flota de heliofísica, haciendo referencia a la historia de ciencia ficción que lleva ese nombre. Wind ha sobrevivido a casi dos ciclos solares completos y a una cantidad enorme de erupciones solares.

"Después de todos estos años, Wind aún nos envía excelentes datos", dice Szabo, quien es el científico de proyecto de la misión, "y todavía conserva unos 60 años de combustible en sus tanques".

Emplear a Wind para descifrar el misterio fue, según Justin Kasper, del Centro Harvard–Smithsoniano de Astrofísica, "una decisión obvia". Él y su equipo procesaron el registro completo del viento solar que recolectó la nave durante 19 años, el cual incluye mediciones de la temperatura, el campo magnético y la energía, y ...

"Creo que la encontramos", dice. "La fuente de calentamiento del viento solar son las ondas ciclotrón iónicas".

Las ondas ciclotrón iónicas están compuestas de protones que describen trayectorias circulares alrededor del campo magnético del Sol con el vaivén típico de una onda. De acuerdo con la teoría desarrollada por Phil Isenberg (de la Universidad de New Hampshire), expandida por Vitaly Galinsky y Valentin Shevchenko (de la UC San Diego), las ondas ciclotrón iónicas emanan del Sol. Al atravesar el viento solar, calientan el gas a millones de grados y aceleran el flujo a millones de kilómetros por hora. Los hallazgos de Kasper confirman que en efecto hay ondas ciclotrón iónicas en acción, al menos en la vecindad de la Tierra donde opera la sonda Wind.

Según Kasper, las ondas ciclotrón iónicas pueden hacer mucho más que solamente calentar y acelerar el viento solar. "También son responsables de algunas de las propiedades muy extrañas del viento".

El viento solar no es como el viento en la Tierra. Aquí en nuestro planeta, los vientos atmosféricos transportan el nitrógeno, el oxígeno y el vapor de agua todos juntos; todas las especies químicas se mueven a la misma velocidad y tienen la misma temperatura. El viento solar, por otro lado, es más extraño. Los elementos químicos que se encuentran presentes en el viento solar, como el hidrógeno, el helio y los iones pesados, se mueven con diferentes velocidades, tienen distintas temperaturas y, lo más extraño de todo, poseen temperaturas que cambian según la dirección.

"Nos hemos preguntando durante mucho tiempo por qué los elementos más pesados en el viento solar se mueven más rápidamente y tienen temperaturas más altas que los elementos livianos", dice Kasper. "Esto es completamente opuesto a la intuición".

La teoría ciclotrón iónica lo explica: los iones pesados resuenan fácilmente con las ondas ciclotrón iónicas. En comparación con sus contrapartes más livianas, obtienen más energía y se calientan al oscilar con las ondas.

El comportamiento de los iones pesados en el viento solar es lo que intrigada a los investigadores en el campo de la fusión nuclear. Kasper explica: "Si uno mira los reactores de fusión en la Tierra, uno de los grandes obstáculos para su funcionamiento es la contaminación. Los iones pesados que se desprenden de las paredes metálicas de la cámara de fusión se introducen en el plasma donde la fusión se lleva a cabo. Los iones pesados irradian calor. Esto puede enfriar el plasma al punto de detener la reacción de fusión".

Las ondas ciclotrón iónicas del tipo de las que Kasper ha encontrado en el viento solar podrían proporcionar una forma de revertir este proceso. En teoría, podrían usarse con el fin de calentar y/o eliminar los iones pesados, devolviendo así el equilibrio térmico al plasma que se está fusionando.

"He sido invitado a varias conferencias sobre fusión para hablar de nuestro trabajo sobre el viento solar", dice.
El siguiente paso, Kasper y Szabo concuerdan, es determinar si las ondas ciclotrón iónicas se comportan de la misma forma adentro de la atmósfera del Sol, donde el viento solar comienza su viaje. Para averiguarlo, la NASA planea enviar una nave espacial al interior mismo de la atmósfera del Sol.

Programada para ser lanzada en 2018, la Solar Probe Plus (Sonda Solar Plus, en idioma español) se adentrará tan profundamente en la atmósfera solar que el Sol parecerá 23 veces más grande de lo que parece cuando se lo observa desde los cielos de la Tierra. En su máximo acercamiento, a unos 7 millones de kilómetros de la superficie del Sol, la sonda Solar Probe Plus tendrá que soportar temperaturas que exceden los 1400 grados Celsius y sobrevivir a ráfagas de radiación de niveles que ninguna otra nave espacial ha experimentado. El objetivo de la misión es tomar mediciones del plasma y del campo magnético del Sol justamente en la fuente del viento solar.

"Con la sonda Solar Probe Plus podremos llevar a cabo experimentos específicos para poner a prueba la teoría ciclotrón iónica empleando sensores mucho más avanzados que los que lleva la nave espacial Wind a bordo", dice Kasper. "Esto debería darnos un entendimiento mucho más profundo de la fuente de energía del viento solar".

Ciencia@NASA

jueves, 21 de marzo de 2013

El universo más joven desafía el modelo cosmológico estándar

El universo más joven desafía el modelo cosmológico estándar 
La radiación del fondo cósmico de microondas (RFCM) es conocida como el eco o el resto de la explosión inicial del universo, el Big Bang. Los primeros datos del satélite Planck de la Agencia Espacial Europea, en cuya misión participa el Consejo Superior de Investigaciones Científicas (CSIC), han dado lugar al mapa más detallado de esta forma de radiación. Esta representación gráfica tan precisa ha revelado ciertas características del universo que difieren de las propuestas por el modelo cosmológico estándar.

La información recogida por el telescopio espacial durante 15 meses y medio proporciona una imagen de cómo era el universo cuando tenía unos 380.000 años de antigüedad. Según estos datos, el cosmos, observado a las más grandes escalas, no presenta las mismas propiedades en todas las direcciones. Dicha cualidad es conocida como isotropía y sería la esperada bajo el marco cosmológico estándar.

Poco después del Big Bang, el universo sufrió un proceso de expansión acelerada denominado inflación. Convencionalmente, este periodo está asociado a una etapa de homogenización de la composición del universo en todas las direcciones. No obstante, el mapa obtenido por Planck muestra una asimetría hemisférica, es decir, que las dos mitades del mapa poseen las mismas características.

En concreto, a gran escala, una de las mitades del mapa presenta más contraste de temperaturas con respecto al valor medio que la opuesta. Esta misma mitad, a su vez, alberga una zona especialmente grande y fría, la llamada Mancha Fría, cuyas características son anómalas.

Aunque la mayoría de la información obtenida por Planck sí que confirma las predicciones del modelo cosmológico estándar, para el investigador del Instituto de Física de Cantabria (centro mixto del CSIC y de la Universidad de Cantabria) Enrique Martínez, investigador del proyecto, “la anomalía encontrada podría ser la punta del iceberg de nuevos fenómenos físicos cuya naturaleza está aún por desentrañar”.

El equipo de Martínez ha sido el encargado, entre otras labores, de obtener el propio mapa de RFCM a través de un método que discrimina las emisiones contaminantes procedentes de otras fuentes. Por su parte, el también investigador del CSIC y participante del proyecto Marcos López-Caniego explica: “Hemos hecho muchas pruebas para intentar justificar dichas anomalías como resultado de otras fuentes de radiación, pero no lo hemos conseguido. Esto podría sugerir que el universo no es, por tanto, isótropo a gran escala como creíamos”.

Misiones espaciales previas ya habían detectado indicios de la región fría anómala. Según el investigador de la Universidad de Cantabria Patricio Vielva, “la precisión con la que la mancha fría ha sido revelada por Planck hace que no pueda ser ignorada y que sea realmente necesario buscar una explicación plausible para su origen”. Para Vielva, “el siguiente reto es construir un modelo nuevo que reconcilie estas anomalías con el modelo genérico, aunque todavía no sabemos qué tipo de física hará falta para ello”.

Nueva receta cósmica

Aparte de las anomalías desveladas, Planck también ha sido capaz de redefinir con mayor precisión la composición exacta del universo. Sus datos aumentan la proporción de materia ordinaria del 4,5% al 4,9%, y la de materia oscura del 22,7% al 26,8%. La energía oscura se reduce, por tanto del 72,8% al 68,3%.

Del mismo modo, la información del satélite afina la constante de Hubble, que es aquella que representa la razón de expansión del universo. Según el telescopio espacial, el universo se expande a 67,15 km/s/Mpc [kilómetros por segundo por megapársec (unidad de medida de la distancia a nivel extragaláctico)]. Todas estas cifras fijan la edad del universo en 13.820 millones de años.

Por último, la misión también ha realizado un catálogo de 1.200 cúmulos de galaxias, muchos de ellos desconocidos hasta la fecha, y un catálogo de más de 25.000 fuentes compactas galácticas y extragalácticas. Para ello, se han servido de herramientas de detección y caracterización desarrolladas por los investigadores del CSIC.

Según López-Caniego, “estos resultados permitirán mejorar el conocimiento sobre la formación y evolución de los cúmulos de galaxias, y acotar algunos parámetros cosmológicos de manera independiente a la RCFM”.

CSIC

Twitter Delicious Facebook Digg Stumbleupon Favorites More