Recent Post

Astroparticulas

La Física de Astropartículas o Astrofísica de Partículas es un campo relativamente reciente de investigación que se dedica al estudio de las partículas elementales de origen astrofísico.

Fisica de particulas

La física de partículas es la rama de la física que estudia los componentes elementales de la materia y las interacciones entre ellos.

Cosmologia

Estudiar y determinar la naturaleza, energía y lugar de origen de los rayos cósmicos como vía para comprender mejor el origen del Universo.

Noticias

Noticias sobre Fisica de Particulas, Astrofisica y Fisica Nuclear.

Videos

Videos sobre Fisica de Particulas, Astrofisica y Fisica Nuclear.

miércoles, 24 de abril de 2013

El CERN obtiene pistas de por qué la materia domina a la antimateria

El CERN obtiene pistas de por qué la materia domina a la antimateria 
El experimento LHCb del Laboratorio Europeo de Física de Partículas (CERN) ha detectado la primera observación de la asimetría materia-antimateria en las desintegraciones de una partícula conocida como B0s. Concretamente, ha observado que esta partícula al desintegrarse ofrece pistas de por qué la materia domina sobre la antimateria.

Se trata de la cuarta partícula subatómica que muestra este comportamiento, según destaca el trabajo, que ha sido publicado en la revista 'Physical Review Letters'.

Se cree que la materia y la antimateria han existido en cantidades iguales en el comienzo del Universo, pero hoy en día el cosmos parece estar compuesto esencialmente de la materia. Mediante el estudio de las diferencias sutiles en el comportamiento de las partículas y antipartículas, los experimentos del LHC están tratando de arrojar luz sobre este dominio de la materia sobre la antimateria.

El CERN ha explicado que este último descubrimiento está relacionado con una preferencia de la materia sobre la antimateria conocida como violación de la simetría CP, que podría explicar por qué existe más materia que antimateria en el Universo, aunque en sus comienzos fuera la misma.

La simetría CP es la suma de la simetría C, que indica que las leyes de la física permanecerían invariables aunque se intercambiasen las partículas de carga positiva con las negativas, y la simetría P, que plantea que tampoco habría cambios si el Universo fuera su imagen especular.

Los resultados obtenidos en el experimento se basan en el análisis de los datos recogidos por el experimento en 2011. "El descubrimiento del comportamiento asimétrico en la partícula B0S llega con una confirmación de más de 5 sigmas, un resultado que sólo fue posible gracias a la gran cantidad de datos proporcionados por el LHC y para capacidades de identificación de partículas del detector LHCb" ha explicado el portavoz del experimento, Pierluigi Campana.

En este sentido, Campana ha apuntado que "los experimentos en otros lugares no han estado en una posición para acumular un número suficientemente grande de partículas B0s".

La violación de la simetría CP fue observada por primera vez en el Laboratorio de Brookhaven (Estados Unidos) en la década de 1960 en partículas neutras llamadas kaones y, unos 40 años más tarde, experimentos en Japón y Estados Unidos encontraron un comportamiento similar en otra partícula, el B0. Más recientemente, experimentos en el CERN han descubierto que la partícula B+ también demuestra violación CP.

Todos estos fenómenos de violación de CP pueden explicarse en el modelo estándar, a pesar de que algunas discrepancias interesantes exigen estudios más detallados, ha indicado el científico.

EUROPA PRESS

miércoles, 3 de abril de 2013

Detectada la mayor cantidad de antimateria en el espacio

Detectada la mayor cantidad de antimateria en el espacio 
El equipo del Espectrómetro Magnético Alfa (AMS), un potente detector acoplado a la Estación Espacial Internacional, ha anunciado hoy en el CERN que han medido un exceso de 400.000 positrones, el mayor número de partículas de antimateria registrado hasta ahora en el espacio. La duda es si proceden de colisiones entre partículas de materia oscura o de los púlsares, estrellas de neutrones que emiten radiación.

Los primeros resultados sobre la búsqueda de materia oscura que el Espectrómetro Magnético Alfa (AMS) está efectuando desde la Estación Espacial Internacional revelan un exceso de positrones –la antipartícula del electrón– en el flujo de rayos cósmicos.

El estudio se publicará en la revista Physical Review Letters, pero hoy el portavoz de la colaboración científica AMS, el profesor Samuel Ting, lo ha presentado en el Laboratorio Europeo de Física de Partículas (CERN).

El exceso o pico de positrones hace referencia a su proporción respecto al número de electrones en determinadas franjas de energía. En concreto han aparecido 400.000 positrones con energías entre 0,5 y 350 gigalectronvoltios (GeV) entre los 25.000 millones de eventos registrados durante año y medio.

Esto representa la mayor colección de partículas de antimateria registrada hasta ahora en el espacio. La fracción de positrones se incrementa desde los 10 a los 250 GeV, y los datos no muestran variaciones significativas a lo largo del tiempo ni muestran una dirección de entrada preferente.

"Se trata de la más precisa medición del flujo de positrones de rayos cósmicos hasta la fecha”, destaca Ting, quien confía en que durante los próximos meses “AMS sea capaz de concluir si estos positrones son una señal de la materia oscura o si tienen otro origen".

Los rayos cósmicos se cargan de partículas de alta energía que permean el espacio. El exceso de antimateria en estos rayos se observó por primera vez hace dos décadas, y hasta ahora se han planteado dos hipótesis sobre su origen.

¿Materia oscura o púlsar?

Una posibilidad, predicha por la teoría conocida como supersimetría, es que los positrones se producen cuando dos partículas de materia oscura colisionan y se aniquilan. La segunda hipótesis señala que los positrones proceden de púlsares, estrellas de neutrones distribuidas por todo el plano galáctico que emiten radiación de forma periódica.

Los datos de AMS son consistentes con el primer planteamiento, aunque tampoco descartan la segunda explicación. "Es el primer experimento para medir con un 1 % de precisión en el espacio, un nivel de exactitud que nos permitirá saber si nuestra observación de positrones actual tiene un origen en la materia oscura o un púlsar", dice Ting.

Las teorías de supersimetría también predicen un corte a altas energías por encima del rango de masas de las partículas de materia oscura, y esto aún no se ha observado. En los próximos años, AMS mejorará la precisión de la medición, y clarificará el comportamiento de la fracción de positrones a energías por encima de 250 GeV.

La materia oscura es uno de los misterios más importantes de la física actual. Representa más de un cuarto del equilibrio masa-energía del universo. Se puede observar indirectamente a través de su interacción con la materia visible, pero todavía no se ha detectado de forma directa.

Las búsquedas de materia oscura se llevan a cabo con experimentos en el espacio, como AMS, pero también en la Tierra con el Gran Colisionador de Hadrones (LHC) del CERN y dispositivos instalados en laboratorios subterráneos de diversas partes del mundo.

"El resultado de AMS es un gran ejemplo de la complementariedad de los experimentos en la Tierra y el espacio", comenta el director general del CERN, Rolf Heuer, quien confía en el trabajo conjunto para resolver el enigma de la materia oscura “en algún momento en los próximos pocos años".

En la colaboración AMS participa España a través del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) y el Centro para el Desarrollo Tecnológico Industrial (CDTI).

CERN | SINC

Twitter Delicious Facebook Digg Stumbleupon Favorites More