Recent Post

Astroparticulas

La Física de Astropartículas o Astrofísica de Partículas es un campo relativamente reciente de investigación que se dedica al estudio de las partículas elementales de origen astrofísico.

Fisica de particulas

La física de partículas es la rama de la física que estudia los componentes elementales de la materia y las interacciones entre ellos.

Cosmologia

Estudiar y determinar la naturaleza, energía y lugar de origen de los rayos cósmicos como vía para comprender mejor el origen del Universo.

Noticias

Noticias sobre Fisica de Particulas, Astrofisica y Fisica Nuclear.

Videos

Videos sobre Fisica de Particulas, Astrofisica y Fisica Nuclear.

jueves, 27 de junio de 2013

Detectado amonio en el espacio por primera vez

Detectado amonio en el espacio por primera vez 
Un equipo internacional de investigadores, liderado desde el Centro de Astrobiología y el Instituto de Estructura de la Materia, informan de la presencia de ión amonio o NH4+ en el espacio. La revista The Astrophysical Journal Letters publica la novedad astroquímica.

Los científicos ya habían detectado más de cien moléculas en el espacio, desde las más abundantes y simples, como el agua, hasta las complejas y grandes cadenas orgánicas, como el benceno. Ahora se añade a la lista una más: el ión amonio (NH4+).

Un equipo de investigadores, liderado por el Centro de Astrobiología (CAB, CSIC-INTA) y el Instituto de Estructura de la Materia (IEM, CSIC) del equipo Consolider-Ingenio ASTROMOL, así lo publican en The Astrophysical Journal Letters.

Aunque el amoníaco (NH3) ya se había encontrado, sin embargo, ésta es la primera vez que el ión amonio se detecta en el espacio a través de su variante isotópica NH3D+. En ella uno de los átomos de hidrógeno se sustituye por uno de deuterio, un isótopo del hidrógeno.

“Este ión es el punto de partida para la formación del amoníaco, NH3 y de moléculas prebióticas aminadas en el espacio”, comenta José Cernicharo, profesor de investigación del CSIC en el CAB, y uno de los líderes de esta investigación.

La detección de este ión ha sido realizada utilizando el radiotelescopio de 30 m de Pico Veleta (IRAM) en la región de formación de estrellas masivas Orión IRc2 y en una condensación de gas muy frío en la región de Perseo (B1-bS). La identificación ha sido posible gracias a los nuevos datos de espectroscopía infrarroja obtenidos por el grupo de Física Molecular del IEM.

Este grupo ha realizado medidas de laboratorio en el infrarrojo en una banda (la denominada ν4) del ión amonio deuterado NH3D+. Las medidas en el infrarrojo mejoran sensiblemente las realizadas previamente gracias a una escala de frecuencias mucho más precisa y a la gran cantidad de líneas espectrales observadas.

Los nuevo datos han permitido obtener valores mucho más precisos para la frecuencia de las transiciones rotacionales del NH3D+. La frecuencia medida coincide con la característica observada en Orión-IRc2 y B1-bS por el grupo del CAB confirmando la identificación del NH3D+ por primera vez en el medio interestelar.

“Este descubrimiento permitirá validar las predicciones de los modelos de astroquímica sobre la abundancia de amoníaco y especies aminadas en las zonas internas de objetos protoestelares, discos protoplanetarios y en regiones de formación de estrellas masivas”, señala Cernicharo.

La astroquímica estudia un rico y variado mundo en especies orgánicas, como son las regiones de formación estelar y planetaria que podrían albergar las raíces prebióticas de la vida. Esta ciencia trata de conocer el papel de las moléculas en la evolución del universo y cómo desde las no bióticas se llega a la vida.

CAB | SINC

sábado, 22 de junio de 2013

Encuentran evidencias de una nueva partícula

Encuentran evidencias de una nueva partícula 
Dos equipos de científicos, trabajando de forma independiente en dos aceleradores de partículas de China y Japón, han detectado lo que parece ser una partícula subatómica con cuatro quarks, lo nunca visto. Su nombre es Zc (3900), según anuncian esta semana en la revista Physical Review Letters.

El detector Belle del acelerador de partículas KEKB, en Japón, y el detector Beijing Spectrometer III (BES III) de otro colisionador en China, han coincidido al encontrar la firma de lo que podría ser una nueva partícula: Zc (3900).

Las dos colaboraciones científicas, integradas por investigadores asiáticos y de otras partes del mundo, publican el hallazgo en la revista Physical Review Letters. En conjunto han detectado 460 ejemplos de la nueva estructura.

Los datos registrados sugieren que Zc (3900) podría ser un tipo desconocido de materia, formada por cuatro quarks. Hasta ahora solo se conocían agrupaciones de dos quarks o antiquarks –como los piones, por ejemplo–, o de tres quarks –como los protones–.

Con la información actual, la partícula parece tener carga eléctrica y al menos un quark encantado y otro antiencantado. El cuarteto se completaría con un quark arriba y un quark antiabajo, según sospechan los científicos.

Lo que hay que confirmar ahora es que, efectivamente, se trata de una partícula con cuatro quarks y no, por ejemplo, de la interacción de dos con un par de quarks cada una, o de uniones esporádicas de este tipo de constituyentes esenciales de la materia.

El descubrimiento de Zc (3900) ha sido el resultado de las investigaciones con otra partícula, Y (4260), descubierta en 2005. Al estudiar su desintegración en los dos colisionadores, los físicos notaron un pico de la energía de unos 3,9 gigaelectronvoltios, unas cuatro veces el peso de un protón. Esto sugiere la existencia de una partícula de cuatro quarks, toda una novedad en física de partículas que habrá que demostrar.

SINC

miércoles, 12 de junio de 2013

Un nuevo acelerador de partículas estudiará la naturaleza del bosón de Higgs

Un nuevo acelerador de partículas estudiará la naturaleza del bosón de Higgs 
Más de 1.000 científicos e ingenieros de 24 países del mundo, entre ellos España, han culminado el largo proceso de diseño del Colisionador Lineal Internacional (ILC), un nuevo acelerador de partículas de 31 kilómetros de longitud que podría arrojar luz sobre el bosón de Higgs o la materia oscura.

En tres ceremonias consecutivas, que tendrán lugar en Japón, Ginebra y Chicago, se entregará oficialmente el informe técnico del diseño del ILC al Comité Internacional para Futuros Aceleradores (ICFA). "La publicación del informe con el diseño supone un importante logro. Gracias al trabajo duro tenemos una máquina que podemos construir. El ILC está listo para comenzar", dijo en una nota de prensa el presidente del comité directivo del ILC, Jonathan Bagger.

El ILC, consistente en dos aceleradores de partículas lineales que acelerarán y colisionarán electrones y positrones, permitirá complementar y profundizar los resultados de las investigaciones efectuadas en el Gran Colisionador de Hadrones (LHC) del Laboratorio Europeo de Física de Partículas (CERN) en Ginebra.

"Agradecemos al equipo del ILC este informe, y esperamos ser testigos del siguiente paso del proyecto. El informe atestigua el esfuerzo y la cooperación global que han concluido con éxito en el diseño de una máquina de esta sofisticación y escala", aseguró Pier Oddone, presidente del ICFA.

La nueva máquina dispondrá de cavidades superconductoras aceleradoras que operarán a temperaturas cercanas al cero absoluto, dando a las partículas energía de forma continua hasta que colisionen en los detectores en el centro del acelerador de 31 kilómetros.

Durante su funcionamiento, paquetes de electrones y sus antipartículas (positrones) colisionarán aproximadamente 7.000 veces por segundo a una energía total de 500 GeV (gigaelectronvoltios), creando una serie de nuevas partículas que serán reconstruidas y registradas en los detectores del ILC.

Cada paquete contendrá 20.000 millones de electrones o positrones concentrados en un área mucho más pequeña que un cabello humano, lo cual implicará una tasa muy alta de colisiones.

El ILC permitirá ofrecer una gran cantidad de datos a los científicos para medir con precisión propiedades de las partículas como el bosón de Higgs, descubierto en el LHC del CERN, o aportar más información sobre nuevas áreas de la física, como la materia oscura.

"El descubrimiento de un bosón de Higgs en el LHC convierte los motivos para el ILC incluso en más apremiantes. El ILC puede estudiar sus propiedades en detalle, será una gran máquina complementaria al LHC", dijo Sakue Yamada, director de Investigación del ILC.

Por otro lado, el director de la colaboración internacional para la creación de un acelerador lineal y uno de los padres del LHC, Lyn Evans, añadió que el informe técnico de diseño es una obra impresionante que muestra madurez, escrutinio y audacia.

"El Colisionador Lineal Internacional debe ser lo siguiente en la agenda de una física de partículas global", aseguró Evans. Por su parte, el director del proceso de diseño del ILC, Barry Barish, manifestó que el informe "dice que estamos preparados para seguir adelante".

"La tecnología existe, los hitos en I+D se han alcanzado, la física que se persigue está clara y podríamos empezar la construcción mañana", aclaró Barish. El diseño ya está listo, pero los próximos pasos aún están por dar: proponer el ILC a los gobiernos colaboradores, realizar un presupuesto creíble, decidir que efectivamente se construirá y dónde se encontrará. "Hay fuertes indicios de que Japón apostará por albergar el proyecto", agregó Barish.

EFE

lunes, 10 de junio de 2013

La ‘pasta nuclear’ limita el periodo de rotación de los púlsares

La ‘pasta nuclear’ limita el periodo de rotación de los púlsares 
Un estudio en el que ha participado el Consejo Superior de Investigaciones Científicas (CSIC) ha detectado la que podría ser la primera evidencia observacional de la existencia de una nueva fase exótica de la materia en la corteza interna de las estrellas de neutrones (púlsares). Los resultados del trabajo, publicado de Nature Physics, podrían emplearse en futuras misiones de observatorios de rayos X para aclarar aspectos del funcionamiento de la interacción nuclear.

Los púlsares son estrellas de neutrones en rotación. Son estrellas ultracompactas y fuertemente magnetizadas que emiten radiación electromagnética con gran periodicidad. “Las misiones espaciales de la última década han detectado un creciente número de púlsares de rayos X y ninguno de ellos presenta un periodo de rotación superior a 12 segundos, pero no existía ninguna explicación teórica para este fenómeno. En este trabajo sugerimos que ese límite superior se debe a la existencia de una nueva fase exótica de la materia, denominada pasta nuclear, en la corteza interna de la estrella, cerca del núcleo”, explica la investigadora del CSIC Nanda Rea, del Instituto de Ciencias del Espacio.

Los púlsares nacen girando muy rápidamente, a más de 100 veces por segundo. Sin embargo sus intensos campos magnéticos los van frenando a lo largo de su vida, con lo que su periodo de rotación aumenta. Entre tanto, la corteza interna corroe el campo magnético de la estrella y cuando éste se vuelve débil ya no es capaz de frenar más la rotación de la estrella: el púlsar está “al dente”, con un periodo de 10 a12 segundos aproximadamente.

Lasaña o espagueti

La pasta nuclear, llamada así por similitud con la pasta italiana, sucede cuando la combinación de la fuerza nuclear y electromágnetica, a densidades cercanas a la de los núcleos atómicos, favorece el ordenamiento de los nucleones (protones y neutrones) en formas geométricas no esféricas, como láminas y filamentos (lasaña y espagueti).

“Esta puede ser la primera evidencia observacional de la existencia de la fase de pasta nuclear en el interior de estrellas de neutrones, lo cual puede permitir que futuras misiones de observatorios de rayos X puedan usarse para aclarar aspectos de cómo funciona la interacción nuclear que aún no están del todo claros”, concluye el investigador José Pons, de la Universidad de Alicante.

CSIC

sábado, 1 de junio de 2013

Primera fotografía del movimiento de átomos durante la reacción de una molécula

Primera fotografía del movimiento de átomos durante la reacción de una molécula 
Científicos de la Universidad de California en Berkeley (EE UU) y de la Universidad del País Vasco han fotografiado por primera vez los cambios atómicos en una molécula mientras experimenta una reacción química. Las imágenes permiten observar los procesos de ruptura y creación de enlaces entre sus átomos, según publica la revista Science Express.

Conseguir una imagen de una molécula mientras está sufriendo una reacción ha sido considerado uno de los santos griales de la química. Pero ahora científicos de la Universidad de California en Berkeley (EE UU) y de la Universidad del País Vasco (UPV/EHU) han logrado, por primera vez, fotografiar con gran precisión una molécula antes e inmediatamente después de una reacción orgánica compleja.

Las imágenes permiten apreciar los procesos de ruptura y creación de enlaces entre los átomos que componen la molécula, según revela el estudio que aparece esta semana en Science Express y que saldrá a mediados de junio en la edición en papel de Science. El primer autor del artículo es Dimas Oteyza, que acaba de reincorporarse al Centro de Física de Materiales (CSIC-UPV/EHU) tras su estancia postdoctoral en Berkeley.

Los modelos estructurales de moléculas en los que tradicionalmente se ha confiado para comprender las reacciones provienen de medias calculadas sobre medidas indirectas de un enorme número de moléculas –del orden de 1020–, así como de cálculos teóricos, pero nadie había tomado antes imágenes de moléculas individuales antes y justo después de una reacción como la estudiada.

“La importancia de nuestro descubrimiento es que hemos sido capaces de obtener imágenes detalladas de las estructuras en las que una molécula se puede transformar sobre una superficie, y de esa manera hemos podido determinar los movimientos atómicos que subyacen en esas transformaciones químicas”, explica Ángel Rubio, catedrático de la UPV/EHU y coautor del trabajo.

Imágenes en alta definición

En concreto, los investigadores han captado imágenes de alta definición de un oligo-enediyne (una molécula simple compuesta por tres anillos de benceno enlazados por átomos de carbono) depositados en una superficie plana de plata. La técnica utilizada es la llamada non-contact Atomic Force Microscopy (nc-AFM), que se basa en un instrumento con una sonda táctil extraordinariamente sensible.

Este microscopio de fuerza atómica utiliza una aguja muy fina que puede detectar las más pequeñas protuberancias a escala atómica, de forma parecida a la que utilizamos para leer una palabra escrita en Braille con las yemas de los dedos. Como las moléculas de oligo-enediyne son tan pequeñas (10–9 m), la punta de la sonda se configuró para que consistiera en un único átomo de oxígeno. Ese átomo proviene de una única molécula de monóxido de carbono, CO, adsorbida en la punta del microscopio AFM y actúa como 'dedo' en la lectura táctil.

Moviendo este 'dedo' atómico adelante y atrás a lo largo de la superficie, obtuvieron perfiles que correspondían con las posiciones precisas de los átomos y los enlaces químicos del oligo-enediyne. Avances recientes en esta técnica de microscopia la han hecho tan precisa que los investigadores han podido incluso distinguir si los enlaces entre los átomos de carbono eran simples, dobles o triples. Después, calentaron la superficie en la que se encontraban las moléculas, induciendo una reacción química relacionada estrechamente con las ciclizaciones.

Las ciclizaciones, descubiertas por el profesor Bergman, de la Universidad de Berkeley, a comienzos de los años 70, consisten en la formación de anillos aromáticos, es decir, átomos de carbono enlazados en cadenas se pliegan en forma de anillo.

“Los perfiles que registramos tras hacer reaccionar las moléculas muestran claramente cómo se forman nuevos enlaces químicos y cómo los átomos dentro de las moléculas se reorganizan para formar nuevas estructuras”, explica Dimas Oteyza. Los resultados se han podido interpretar y analizar microscópicamente gracias a simulaciones realizadas en el grupo de Ángel Rubio.

Además de conseguir una sorprendente confirmación visual de los mecanismos microscópicos que subyacen a las reacciones químicas orgánicas predichas teóricamente, este trabajo tiene relevancia –según los autores– para la fabricación de nuevos materiales y aparatos electrónicos de medida de alta precisión a escala nanométrica.

Basque Research | SINC

Twitter Delicious Facebook Digg Stumbleupon Favorites More